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Abstract. The quasifermion approximation based on Ihe weakening of conditions imposed 
on Ihe density matrix of a manyelectron system is considered in Ihe present paper. In lhis 
approximation, a rather simple consbuction for the density matrix and for !he energy can be 
obtained. The application of this approximation !n a variety of materials science problems is 
shown to be in goad agreement with experimenlal results. 

1. Introduction 

The solution of theoretical problems of materials science related to mechanisms of 
destruction, heat, corrosion and radiation resistance and the prediction of useful properties 
of materials requires computational methods that would permit one to simulate defects, 
impurities, cracks and grain boundaries as well as the processes of their evolution in solids. 
Since such processes are usually accompanied by creating and breaking chemical bonds and 
local rearrangement of electron charge density, the most pertinent form of theory is quantum 
theory, based on the tight-binding or LCAO approximations [1,2]. However, the possibility 
of making use of these methods is essentially limited because adequate models of disturbed 
crystals should contain several thousands of atoms. Only in this case can the boundary 
conditions for atoms modelling the essential area of a crystal or of its surface, the lattice 
relaxation in the vicinity of defects and fracture mechanisms be realistically simulated. 
Another approach to the problem can be based on the use of the pair potential method 
[3-51. Despite the fact that considerable progress has been achieved in the investigation 
of defects in ionic crystals and metals within the pair potential model, the method has 
principal shortcomings that do not allow a number of important characteristics of solids 
to be reproduced, so it is not able to yield the correct values of elastic moduli and to 
account for the digression from the Cauchy relation Cl2 = C, for cubic crystals. The 
vacancy formation energy is always found to be overestimated and about equal to the 
cohesive energy. Its disadvantages finally become insuperable when we contemplate the 
simulation of the indirect electron influence on interatomic bonds in solids, which is needed 
to understand better such phenomena as the embrittlement and the change in self-diffusion 
rate within contaminated metals. 

One of the most promising ways to avoid these difficulties consists of the construction 
of simple N-body potentials permitting one to take into account the band character of 
solid cohesion [6,71. However, the potentials determined in such a manner are essentially 
empirical, which complicates their application to hetematomic systems. This approach 
also has the drawback that its fundamental assumption is arbitrary, although there was an 
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attempt to motivati the functional form of obtained potentials using the second-momentum 
approximation of tight-binding theory [PI. 

In this paper we give a brief theoretical foundation of an alternative approach, which 
makes it possible to mat the multiatomic interactions in solids. It is based on the use of the 
quasifermion approximation for minimization of the total energy represented as a functional 
of the density matrix. This enables all the interatomic potentials to be expressed through 
molecular integrals. Some semiempirical versions of the theory and their applications are 
discussed as well. 
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2. The quasifermion approximation 

Let us consider a multiatomic system with closed shells formed by n electrons distributed 
over N valence atomic orbitals. We shall suppose that one-electron states of the system 
are described by an energy operator independent of the density matrix. In this case the 
total electron energy of the system is equal to the sum of energies of occupied one-electron 
states. In the ground state its value correspon+ to the minimum of the functional 

E = 2Tr(HP). (1) 

Here H is the Hamiltonian and P is the density matrix, which shoula obey the following 
conditions: 

2Tr(P) = n 

P= = P. 

The second of these relations is the mathematical expression of the Pauli principle. It 
considerably complicates the problem of variation of the energy functional and makes it 
necessary to use numerical methods. 

In the quasifennion approximation [9.101. the condition (3) is substituted by the 
requirement of equality of the traces of the matrices involved. The new condition, imposed 
with the use of relation (2), can be written in the form 

2Tr(Pz) = n .  (4) 

It is evident that this condition is weaker than (3). because it holds for any idempotent 
matrix and at the same time some non-idempotent matrices satisfying it do exist. Thus the 
set of matrices on which the functional (1) is minimized proves to be enlarged. The fact 
that the requirement of idempotency is weakened permits us to minimize functional (1) by 
the Lagrange multipliers method and obtain the analytical expression for the density matrix 

P = t i  - q(H - h l i ) / m  

and for the total energy 

where = n/2N is the mean occupation of one-electron levels, 



Quasifermion approach to interatomic inreructions 

is a factor of interatomic bonding, which will be discussed below in detail and 
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ha = (l/N)Tr(HX) (8) 

are moments of the Hamiltonian. As the minimum of functional (1) was found in a set 
larger than the set of idempotent matrices, the evaluated total energy gives an estimation of 
its exact magnitude from below. 

In [lo], it was shown that the solution obtained can be considered as a starting point 
for the exact one to be constructed. The method of its successive improvement is based on 
the following statements. 

(i) The space of real symmetric matrices commuting with H, having scalar product 
Tr(AB), and metric d w +  is isomorphic to the N-dimensional Euclidean space 
R" and the subset of its matrices satisfying conditions (2) and (4) is isomolphic to the 
(N - 2)-dimensional sphere S,. 

(ii) The totality of idempotent density matrices ( P  - i) corresponds to C t  equivalent 
vertices (where k = 1112 is the number of occupied levels) of permutation polyhedron Mk> 
about which the sphere S, is circumscribed. 

(iii) The quasifermion matrix (5) lies on the sphere S, in a Dirichlet region connected 
with the ground-state matrix Pp and Pg proves to be the nearest to it of all matrices P, as 
follows from the inequality 

(iv) On the sphere S, there is a universal functional 

= (3/N)44 + (1  - 3 / N ) [ ( 4 3  + 1 - 25)/21]* (10) 

(1 1) q; = (I/N)Tr(ZP - I)' 

which is topologically isomorphic to polyhedron MI: its critical points are situated at the 
points of the sphere corresponding to the centres of the polyhedron faces and the Morse 
indices [ I  I ]  of the critical points form the same sequence as the dimensions of the faces. 
Idempotent matrices Pi correspond to the minima of functional (IO). 

Taking into account the properties of the functional Q(P) .  the unknown density matrix 
Pp can be constructed choosing the quasifermion matrix (5) as a starting approximation and 
fulfilling a step by step gradient descent procedure. 

The calculation procedure just described may be used for acceleration of the iteration 
process in different versions of the SCF MO K A O  method. On the other hand, the rapid 
convergence [IO], testifying to a good quality of the initial approximation, permits us to 
develop a specific approximation theory of solid cohesion. In subsequent sections we 
restrik ourselves to consideration of this theory and its semiempirical versions, using only 
the simplest expression for the energy (6) obtained in the quasifermion approximation, and 
modifying it for different types of Hamiltonian. 

3. The simplest tight-binding Hamiltonian 

In the case of the effective Hamiltonian of the tight-binding method the diagonal matrix 
elements ai (Coulomb integrals) have the sense of energies of oneelectron atomic levels 
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and the offdiagonal elements pij (hopping integrals) are decreasing functions of interatomic 
distances 1121. Taking into account these notations, relation (6) can be transformed as 
follows: 
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where Gi is the mean value of powers of Coulomb integrals, ,!l:s is a pairwise interatomic 
interaction 

iEA i E B  

Expression (12) has a clear physical meaning. The first term within parentheses 
corresponds to the electron energy of isolated atoms. The second term describes the energy 
of chemical bonds between the atoms. It contains the contribution from the donor-acceptor 
interaction given by the dispersion of Coulomb integrals and the painvise summation 
connected with the delocalization of electrons under the creation of covalent or metallic 
bonds. It is to be noted that the form of cohesion energy obtained here looks very like the 
standard second-moment model of tight-binding theory [13-161. Furthermore, for a half- 
filled band the resemblance becomes complete. In the particular case of a two-level system, 
the two solutions are proved to coincide with the exact one from the secular equation. 
Nevertheless, our result has an important advantage due to it being derived without any 
additional assumption except for the quasifermion approximation referred to the picture 
of density of states or the valence band occupation. The charge state of atoms was not 
restricted either as has been done elsewhere 1171. The specificity of the quasifermion total 
energy consists of the presence of the occupationdependent coefficient q before the square 
root. Owing to relation (7). this multiplier reaches its maximal value at half band occupation 
and vanishes for completely free and completely filled shells. It allows the model discussed 
here to be employed at arbitrary valence band filling. 

The functional dependence of total energy on atomic and smctural parameters obtained 
in the quasifermion approximation permits one to give a qualitative analysis and to explain 
the regularities in different properties in the rows of chemical elements and chemical 
compounds. For example, let us consider the dependence of vibration frequencies of 3d 
transition metal dimers on the atomic number. Supposing that the second derivatives of 
two-centre integrals at the points corresponding to equilibrium interatomic distances are 
approximately the same for the elements of the same row, we can expect a symbatic character 
of the change of the vibrational frequencies and the coefficient q along the row. The results 
of non-empirical calculation 1181 on dimer vibrations (figure 1) justify such a supposition 
reasonably well. 

A similar approach makes it possible to explain the periodic trends of heats of 
chemisorption on metals, heats and temperatures of melting and activation energies of 
self-diffusion, the influence of impurities on strength and cohesion properties of metals, etc 
[19-211. 

4. The energy operator of the €Iartre+Fwk-Rmthaan approximation 

Within the Hartree-Fock method the total elechon energy is described by a functional 
quadratic with respect to the density matrix (221. Let us restrict ourselves to systems 



Quasifermion approach to interatomic interactions 8843 

Ss T i  V C r  Mn Fe CO Ni Cu 

Figure 1. The vibration frequencies and the values of paramerer q for 3d melal dimers @old 
curve, experiment dashed curve, theory). 

permitting its linearization. They include, for instance, metals and homoatomic covalent 
crystals for which the charge transfer between atoms is absent, alloys, impurity defects and 
chemisorption complexes involving elements with not too diverse electronegativities as well 
as ionic crystals. 

In the case of closed shells and a non-orthogonal set of atomic orbitals, the linearized 
energy functional has the form 

E = W+ZTr(fS'/'F(D)S-'/') -2Tr[DG(D)] (14) 

where D denotes a diagonal matrix of orbital occupation numbers for neutral atoms or for 
ions, S is the overlap matrix, W is the potential energy of atomic core interaction, G is the 
electron interaction matrix, F = H + 2G is the Fock operator matrix and H is the matrix 
of the operator 

I? = -402 + t ( r )  (13 

which includes the lattice potential ?(r) .  

the following result 
The minimization of the functional (14) using the quasifemion approximation leads to 

According to equation (16). all the calculations are now reduced to the evaluation of 
quantities fk and g, representing the convolutions of molecular integrals. It is essential that 
such evaluation does not require preliminq construction of and c? operator matrices. 
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Moreover, by virtue of the invariance of matrix traces under unitary transformation of 
the basis orbital set, the calculation of the integrals is simplified greatly since formulae 
convenient for applications can be obtained directly for convolutions themselves. Further 
simplification can be gained if we make use of several assumptions usual for semiempirical 
methods of quantum chemistry to estimate the traces of matrix products given by relations 
(17) and (18). For this purpose, let us replace the S'lz matrix by the initial terms of 
its truncated power series over the off-diagonal part of the overlap matrix, take the, NW 
approximation for multicentre integrals and adopt the conventional approximate formula 
Fjj = O.SB(f i i  + F,j)Sij  for off-diagonal elements of the Hartree-Fock matrix including a 
semiempirical parameter Bas. With these assumptions, the total energy (16) can be written 
as 

A M Dobromorskii and 0 V Afanasjeva 

Here U0 and WO are quantities independent of interatomic distances that represent the total 
energy of non-interacting atoms and the dispersion of atomic level energies €1, respectively. 
Each of them is a sum of site contributions over all atoms of the system 

where $1 = n 1 / ( 2 N l ) ,  NI is the number of atomic orbitals in the subshell with orbital 
quantum number I ,  nt is the occupation of the subshell and r f ,  VI and g1 are the values of 
one-centre integrals of kinetic energy, interaction with the core, and electron interaction, 
respectively averaged over the subshell. 

The painvise terms UAB and WAB in equation (19) can be expressed through the two- 
centre integrals. They have the simplest form in the first order in the overlap matrix 

U A B  = U;B +4CC[(l = f l A B ) ( E f  +Ef,)Ufi,]* ( 2 3 )  
I E A  P E E  

where U i B  denotes the energy of Coulomb interaction of charge densities of neutral atoms 
(or ions in the case of ionic crystals) 

It is evident that in solving particular problems of materials science different approaches 
to calculation or approximate evaluation of quantities entering the relations (16) and (19) 
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may be used in place of those described above. In order to choose the most appropriate 
computational scheme, attention should be paid to both the experience accumulated in the 
quantum solid state theory and the physical nature of the solids under consideration. 

It should be also emphasized that the square rcmt term in equation (19+non-additive 
with respect to painvise interactions-is the simplest in its N-body potential structure. For 
metals with an ideal lattice, its form coincides with the potential from [61 with accuracy 
up to the W$ term, which in this case is usually small. At the same time, when we deal 
with solids that possess a more complex structure or composition the situation is different 
because the form of the covalent bond energy constructed by the authors of [a] incorporates 
a sum over all atoms of a square root cohesive function. For each type of atom this function 
is written as the simple N-body potential with the square root structure described above. 
The same result, however, can be derived from quasifermion theory as well, if we go from 
the many-atomic model to the model of an 'atom in a solid'. Evaluating the energies of 
separate atoms embedded in the crystal by means of the basic relation (19) and summing 
the atomic contributions obtained in this manner we find the following expression for the 
total energy: , 

Thus, the quasifermion theory gives us a flexible computational technique applicable to 
investigation of a large variety of solid state models. We now briefly discuss some of its 
applications. 

5. Calculation of metal properties 

The possibility of using the N-body potential constructed within the quasifermion 
approximation for calculation of elastic properties and point defect energetics can be judged 
from the results for aluminium. The calculations were carried out within the sp basis. 
To take into account the inner electron shells, a simple effective core potential [23] has 
been employed The exponents of Slater-type valence atomic orbitals have been optimized 
by means of the Hartree-Fock procedure. The properties of the metal were calculated 
for two different electronic configurations of the AI atom: (i) the ground state s2 p' and 
(ii) a hybrid state with uniform occupation of valence atomic orbitals. The interatomic 
interactions entering equation (19) were determined for eight atomic spheres father from 
which all the pair potentials appeared to become small and may be neglected. For each 
of two electron configurations the only fitting parameter j3 was chosen so as to reproduce 
equilibrium values of the AI lattice constant. The results of calculations (table 1) show that 
not only the elastic moduli of second order but also the theoretical value of the derivative 
of the bulk modulus with respect to pressure are in fair accordance with experiment. 

It is noteworthy that values of the anisotropy coefficient of the Young's modulus and 
the parameter q = (Ctz - C++)/C12 characterizing the deviation from the Cauchy relation 
are very reasonable. This emphasizes the substantial advantage of the N-body potential 
constructed here compared with the pair potential model. The energies of point defect 
formation and migration in aluminium E: = 1.17 eV, E: = 0.81 eV and E: = 2.85 eV 
calculated in the framework of the cluster model within the same assumptions referred to 
the atomic parameters (the second type of electron configuration was considered) also agree 
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Table 1. The elastic properties of aluminium. 

~CUlatiOns 

I 2 

66.7 71.1 

98.6 lW.0 
3.93 3.99 

50.7 56.7 
27.7 25.4 
64.2 58.9 
68.9 63.6 

0.93 0.93 
0.53 0.62 

Experiment 

1241 [U1 
79A 76.0 

114.3 107.0 
621) 60.7 
315 28.2 

773 68.6 

4.26 3.45 

70.8 62.5 

0.92 091 
0.49 0.61 

with experimental data, although a slightly overestimated value was found in the case of 
vacancy formation [26]. 

In calculating the elastic coefficients for transition metals, the computational scheme 
adopted was somewhat different. In this case, we have made use of effective core potentials 
and atomic orbitals from 1271. The atomic value configuration and the parameter ,9 for each 
metal were fitted to the experimental lattice constant and bulk modulus. Other details of 
the calculation have been reported earlier [28]. We restrict ourselves here to the discussion 
of data obtained for a-iron, nickel and chromium (table 2). 

Table 2. The elastic properties of vansition metals. 

Elastic constants =-Fe Ni 0. 

@Pa) Calculation Experiment[24] Calculation Experiment [XI Calculation Experiment [XI 

K 166.2 173.1 186.8 168.8 188.6 173.1 
a K i a P  3.1 3.7 5.7 6.2 3.3 3.7 
ct 1 
ClZ 

217.8 243.1 254.4 261.2 240.8 394.1 
140.4 138.1 153.1 150.8 162.5 88.5 

C44 134.8 121.9 128.1 131.7 127.0 103.8 
,? 0.04 0.12 0.16 0.13 0.22 -0.11 

In the two former cases, the moduli calculated are in reasonably good agreement with 
experimental values [24] and could be further improved by more accurately varying the 
initial parameters. At the same time, the N-body potentials constructed by us fail to give 
rise to results of the same quality for Cr. The reason for this lies in the fact that Cr is 
the only transition metal with a negative deviation from the Cauchy relation. By carrying 
out the mathematical deviation analogous to those leading to the equality C12 = Ce for 
central two-body interactions in cubic crystals it is possible to show that in the case of the 
N-body potential (19) the difference C12 - CM is always non-negative and, consequently, 
the anomaly under consideration cannot be explained. The same is true for the N-body 
potential from [61. To solve this problem, it is necessary to introduce conections connected 
with the procedure of successive approximations for the density matrix and the total energy, 
described above. 

The method we are discussing is of special interest in connection with the heteroatomic 
system problem, in particular with the problem of ‘hydrogen in metal’. Such calculations 
were performed for a number of metal-hydrogen systems [28-311. In [281 and [31], the 
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results of computer simulation of lattice relaxation for different H impurity positions and 
for diffusion processes of H in AI, @-Fe and Fe-Cr alloys have been reported. It was shown 
that on the basis of these calculations reliable evaluations can be made not only of the 
activation barriers but also of pre-exponential factors of the diffusion coefficient. 

In [29] and [30], it has been demonstrated that the quasifermion approximation can 
be used for investigation of the influence of H on cohesive properties of metals, such as 
ideal strength, and on defect formation and self-diffusion. Table 3 shows the results of 
calculations of the bulk modulus and the ideal tensile strength for a-Fe crystals at different 
impurity concentrations. 

Table 3. Influence of hydrogen on mechanical properties of a-Fe. 

VH K ~ 1 0 0  
(at.%) (GPa) (GPa) 
0 168.4 40.7 
0.155 167.0 39.6 
0.930 160.8 38.0 
1,860 153.6 35.7 
3.720 140.6 30.5 

These data c o n h  the estimation made in the h h e s i v e  theory of H embrittlement, 
according to which the decrease of cohesive forces is about 3-30% at.% H in the local areas 
of metal enriched by dissolved gas [32]. 

6. Conclusions 

The method developed in this paper in the framework of the quasifermion approximation has 
considerable advantages over the pair potential approach as well as over the method based 
on building the simple empirical N-body potential into the conventional pairwise model. 
It can be applied to calculation of the total energy of multi-atomic systems containing 
components of different chemical nature and, hence it permits one to simulate a wide range 
of processes in solids. 

There is an evident logical connection of the present method with quantum mechanical 
equations that allows convenient expressions for interatomic potentials to be derived 
and experience accumulated in quantum theory of solids to be used for the purpose of 
applied calculations. A minimal number of semiempirical parameters is required to fulfill 
such calculations. The relative simplicity of the method makes it possible to use it for 
investigations of models including hundreds of atoms and to take into account not only 
direct atom-atom interactions but also the effects connected with electron delocalization 
and charge transfer. The flexibility of the method makes it promising for solving several 
theoretical problems of materials science. 
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